
SIGPWNY
Heap ExploitationHeap Exploitation 
Part 1- Intro to Malloc



Recap
Stack and the Global Offset Table



All programs have a stack.



All programs have a stack.



All programs have a stack.

Top

Bottom



All programs have a stack.

0x00000000

0xFFFFFFFF



What goes in the stack?

Local Variables

Return Address

Saved frame pointer

Arguments

…



What goes in the stack?

Local Variables

Return Address

Saved frame pointer

Arguments

…

Points to 
next instruction 

after this function



We can overflow the stack

AAAAAAAA

ATTACKER CONTROLLED

AAAAAAAA

Arguments

…

Points to 
next instruction 

after this function



We can overflow the stack

Evil code

ATTACKER CONTROLLED

Evil code

Arguments

…

Points to 
next instruction 

after this function



Dynamic Linking
The Global Offset Table



libc
Pronounced “Lib See”



libc
Pronounced “Lib See”



How do programs know where libc functions are?



Global Offset Table

Name Address

printf “0x41414141”

exit “0x42424242”

puts “0x43434343"

memset “0x44444444"

Mapping between name & address



The Heap
libc Dynamic Memory Allocation



Dynamic Memory

malloc(number of bytes) 

returns a pointer

free(pointer)

cleans up the pointer



Dynamic Memory



Dynamic Memory



Dynamic Memory



Dynamic Memory



Ways to screw up dynamic memory

Not freeing memory 
Leads to memory leaks.

(not the information disclosure kind 
of leak)


Not necessarily exploitable, might be 
able to crash a program.

Using memory after freeing it 
Leads to “Use after Free” (UaF)


Pretty good chance that this is 
exploitable.



Ways to screw up dynamic memory

Freeing something more than once 
Corrupts internal heap data structures.


Can lead to exploits (see Heap Challenge 3).



Get attacker controlled data 
where it shouldn’t be.

Main Goal



Get attacker controlled data 
where it shouldn’t be.

1. Corrupt objects the program is still using (“Use after Free”)

2. Set the heap up such that future allocations return attacker controlled 

data (“heap spray”, “double free”, “malloc maleficarum” attacks), or 
point to structures of interest (“unlink macro” exploit)


3. Overflow heap objects by corrupting size or using buffer overflows 
(see “Heap Challenge 4”)


4. Get creative



Heap can be weird.



Don’t try to memorize all attacks, 
develop intuition for why they work.



When glibc patches these attacks, or 
you’re working on a different allocator, 

general intuition > memorization.



 Next heap meeting:

How malloc internals work.



Recommended Reading

glibc malloc source code: https://github.com/bminor/glibc/blob/master/malloc/malloc.c


Once Upon a Free(): http://phrack.org/issues/57/9.html


Malloc Internals: https://sourceware.org/glibc/wiki/MallocInternals


LiveOverflow Binexp series: https://www.youtube.com/watch?v=HPDBOhiKaD8


Shellphish how2heap: https://github.com/shellphish/how2heap

https://github.com/bminor/glibc/blob/master/malloc/malloc.c
http://phrack.org/issues/57/9.html
https://sourceware.org/glibc/wiki/MallocInternals
https://www.youtube.com/watch?v=HPDBOhiKaD8
https://github.com/shellphish/how2heap


Heap 1
Your first UaF exploit!


