
CTF Training

University of Illinois March 29, 2019

Richard Hammond
Cyber Software Engineer

Agenda

• Why CTF?

• Tools Used

• RE Problems

• PWN Problems

2

Why CTF

• Builds critical problem solving skills

• We use those skills everyday to solve challenging problems

– Field component development – multiple platforms

– Un-attributable communications

– Radio and wired communications

– Command and Control

– Mission Planning

– Operations knowledge and support

– Vulnerability Analysis

3

Tools

• IDA

– Free for 32 bit binarys

• Ghidra

– Open source from NSA

– Includes decompilers

• Python

– IDA python

– Creating shellcode

• Objdump

• GDB

• Hex Workshop

• Favorite Linux distro

• https://tools.kali.org/tools-listing

4

https://tools.kali.org/tools-listing

Reverse Engineering

x86-64 Assembly Primer

• $rsp – Points to the top of the stack. Stack grows towards lower

addresses. Stack is allocated by subtracting from $rsp.

• $rbp – Points to the base of the stack frame. Stores the previous base

pointer and can be used to “unroll” the stack. $rbp doesn’t change

within the stack frame so pointer arithmetic can be used with $rbp to

access local variables and function arguments.

6

x86-64 Assembly Primer Continued

• $rdi contains argument 1

• $rsi contains argument 2

• $rcx contains argument 3

• $rdx contains argument 4

7

RE Problems

• Given a binary without the source code

• Find a flag (string of characters) hidden in the binary

• Approach

– Run file utility to figure out what the file is

– Run the binary

– Find interesting strings (strings utility)

– Examine binary (objdump)

– Trace back the code that leads to the desired output

– Focus on what input creates the desired output and ignore everything else

• Flag Format

– nctf{}

8

h4ck3rz

• Simple warm up

• Start by running the file utility and then see if there are any interesting

strings

– file h4ck3rz

– strings h4ck3rz

9

matr1x

• Slightly harder, but still easy to find string

• Run strings utility (strings matr1x)

• Run the binary (./matr1x)

• Disassemble binary (objdump –d –M intel matr1x)

• Look for anything that could transformed into the flag

10

kendrick

• Run binary (./kendrick)

• Find “hidden function” (objdump –d –M intel kendrick)

• Figure out where the characters are being outputted (puts)

• Apply “hidden function” to output and get the flag

– Extract desired bytes

– Use python to recreate the hidden function

11

PWN

PWN Problems

• Very similar to RE problems

• Binary usually runs on a server and accepts inputs

• Approach

– Use static analysis (IDA, Objdump…) to identify a vulnerability

• Vulnerabilities are found by looking at where the program takes input. Was the

data not sanitized, were unsafe functions used with no bounds on copy?

– Plan your exploit (shellcode on the stack, heap, rop chain?)

– Write an exploit to gain control of program execution

– Use GDB to dynamically debug shellcode

• Flag Format

– nctf{}

13

overflowMe

• Run the binary

• Load the binary in IDA/Objdump

• The binary has an interesting function called ‘win’

– How is this function triggered?

• Can the variable that guards the call to ‘win’ be modified?

• Find the function that accepts input

– How big is the buffer it copies to?

– Does it put a size restriction on the copy?

14

overflowMe Solve

15

• ‘win’ sounds like an interesting function

– We don’t care what it does. Just guessing we need to execute it

• ‘secret’ also sounds like an interesting variable

• ‘secret’ is compared to 0. If ‘secret’ is zero, then the branch is taken. If
‘secret’ is non-zero, then ‘win’ is called. How do we make ‘secret’ non-
zero?

overflowMe Solve

16

• ‘gets’ is a dangerous function as it does unrestricted copies

• The stack variable ‘s’ is getting passed to ‘gets’

• The ‘secret’ variable is also on the stack. Can writing enough data into ‘s’
change the value of ‘secret’?

• IDA tells us the layout of the stack in relation to $ebp

• ‘secret’ is at a higher address than ‘s’ and therefore can be overwritten

• ‘s’ has 60 bytes allocated to it (0x48 – 0x0C). Writing 61 bytes to ‘s’ will
change the value of ‘secret’

overflowMe Solve

17

• If unable to reach CTF server, create server on local machine

– Put a flag.txt file in /home/overflowme

– Run nc -l -p 1234 | ./overflowme

• Create the exploit string and pipe it to netcat

– python –c ‘print “\xAA” * 61’ | nc <ip addr> <port>

slightlyHarder

18

• Very similar to last problem

• Run the binary

• Load it into IDA and see what you can find

slightlyHarder Solve

19

• ‘gets’ is used again with a stack variable as the argument

• This time the buffer passed to ‘gets’ is 120 bytes long (0x84 – 0x0C)

• ‘secret’ must be equal to 0x1337 for ‘win’ to be called. ‘secret’ is initialized
to 0 and never set after that. We have control over what ‘secret’ is after
overflowing ‘s’.

slightlyHarder Solve

20

• If unable to reach CTF server, create server on local machine

– Put a flag.txt file in /home/slightlyharder

– Run nc -l -p 1234 | ./slightlyharder

• Create exploit string and pipe it into netcat

– python –c ‘print “\xAA” * 120 + “\x37\x13”’ | nc <ip> <port>

• 120 bytes fill up the buffer ‘s’. The next two bytes overwrite “secret”.

• We are working with little endian so the LSB must come first

cfiRedirect

21

• Another buffer overflow

• Goal is control over PC, not overwriting a stack variable

• Need to get control over $eip. At the end of the function, $ebp + 4 (the

return address) will be popped off the stack and put into $eip. Can we

change what $ebp + 4 is?

cfiRedirect Solve

22

• “main” does an unconditional call to “vuln”

• Once again “gets” is used, but “win” is never called. We can fix that by
writing 68 bytes (0x44) to fill the stack frame, another 4 bytes to overwrite
$ebp, and another 4 to overwrite the return address.

cfiRedirect Solve

23

• If unable to reach CTF server, create server on local machine

– Put a flag.txt file in /home/cfiredirect

– Run nc -l -p 1234 | ./cfiredirect

• Address of win is 0x8048549. This is what we need to set $ebp + 4 to.

Remember little endian.

• Create exploit string and pipe it into netcat

– python –c ‘print “\xAA” * 72 + “\x49\x85\x04\x08”’

Questions?

24

References

• https://software.intel.com/sites/default/files/article/402129/mpx-linux64-

abi.pdf

• https://www.hex-rays.com/products/ida/support/idapython_docs/

25

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://www.hex-rays.com/products/ida/support/idapython_docs/

