Week 04
Reverse Engineering I

Nathan

&

N

Announcements

- Server and auth bot will be up by next Thursday
- Email us if you need UIUCrole

- O2F, 3rd Place! 100s!
- Fall recruitment event, need challenges!

- Purdue Oct 16-17
- looking for PWN 2 presenter

sigpwny{plz no nsa backdoor

WHAT{MY(CODESAYS

float get_biggest_number(float a, float b){
bool is_a_biggest;
bool is_b_biggest;
if (a > b){

is_a_biggest = true;

lse {
is_a_biggest
}
if (b > a){
is_b_biggest

is_b_biggest = false;

(is_a_biggest == true){
return a;

}

if (is_b_biggest == true){
return b;

}

WHAT(COMPILER THINKS:

iumber
maxss
ret

. // |
‘- 6ce-03

“Sometimes my genml ,.jn almost frightening”

==

Table of Contents

* RE
* What is reverse engineering?
* Compilation
* Executables

e Ghidra

* GDB

O

What 1s reverse engineering?

* Given a program, figure out what it does and how it works
* Can we crack programs and write keygens?

* Can we obtain secrets from the program?
* Rocket league decryption key for game assets

* Can we look for a flaw in the logic to find bugs?

* Programs can be written in C/C++, Java, Python ... which all require

different strategies to RE
* We will focus on C/C++ programs compiled for Linux

Compilation

(base) nathan@desktop:~/Documents/sigpwny/re3/pres$S ./my_compiled_program
Hello world!

> ‘
E/;\)

Compiler

Executable

Source code

S

Executable

 Contains machine code (x86, ARM, ...) that your processor

understands
* Hard for humans to understand, though!

* Uses registers and a stack, among other things

* Register = 64 bit number (can be a number or a pointer)
* Think of this as a general purpose variable

« Stack = memory you can push and pop (used for function calls)
* Heap = malloc’”d memory
* Data segment = memory where global variables are at

Reverse 1it!

add(unsigned
test
je
mov

unsigned add(unsigned n) { mov

ary - gy - ” ~
CComnl Fa | 3 R T
JVIHLJULT L "

unsigned result 5 ' — add
for (unsigned 1 = 1; 14 8 add

result += 1; C cmp

} 10 jnb
return result; 11 .L2:

mov

ret

mov
jmp

https://godbolt.org/

Ghidra to the rescue!

* Open source disassembler/decompiler
* Transforms executable to disassembly
* (Can decompile disassembly to pseudo-C

* Written by the NSA @

Ghidra to the rescue!

uint add(uint n)
{
uint i;
unsigned add(unsigned n) { uint result:
’/ Compute 1 + 2 + ...
unsigned result = 0; result =n;
for (unsigned 1 = 1; 1 . i lfi(; !f) {
result += 1i; e
} do {
return result; L e
1=1+ -
} while (i <= n);
}
return result;
}

Ghidra follow along

Open Ghidra!

&

N

Dynamic Analysis with GDB

* GDB can debug assembly

* You can show the state of
registers, the stack, and other
memory

* Takes some getting used to!

GDB follow along

&

N

GHIDRA CHEAT SHEET

Get started:

e View all functions in list on left side of screen. Double click main to decompile main
Decompiler:

e Middle click a variable to highlight all instances in decompilation

e Type “L” to rename variable

e “Ctrl+L” to retype a variable

e Type “;” to add an inline comment on the decompilation and assembly

e Alt+Left Arrow to navigate back to previous function
General:

e Double click an XREF to navigate there

e Search -> For Strings -> Search to find all strings (and XREFSs)

e Choose Window -> Function Graph for a graph view of disassembly

GDB CHEAT SHEET

“b main” - Set a breakpoint on the main function
o “b *main+10” - Set a breakpoint a couple instructions into main
“r” - run
o “rargl arg2” - Run program with argl and arg2 as command line arguments. Same
as ./prog argl arg2
o “r<myfile” - Run program and supply contents of myfile.txt to stdin
“c” - continue
“si” - step instruction (steps into function calls)
“ni” - next instruction (steps over function calls)
“x /32xb 0x5555555551b8” - Display 32 hex bytes at address 0x5555555551b8
o “x /4xg addr” - Display 4 hex “giants” (8 byte numbers) at addr
o “x/16i $pc” - Display next 16 instructions at $rip
o “x /s addr” - Display a string at address
“info registers” - Display registers
“info file” or “info proc map” - Display memory mappings
“layout asm” - Get a split screen window to step through assembly

Go try for yourself!

* Start with re_intro

* All can be solved with Ghidra. (debugger will be very
easy with GDB!)

* Practice practice practice! Ask for help!

https://ctf.sigpwny.com

Next Meetings

Weekend Seminar: Reverse Engineering Il

- Explore more advanced RE tools + methods
- Explore more complicated obfuscation

Next Thursday: Pwn |

- Go over pwn fundamentals
- How to exploit programs with vulnerabilities

