
Week 03
Crypto I

Husnain, Anakin, Hassam, Pranav, Nebu



sigpwny{rot13_twice_extra_secure}



Announcements

Scoreboard reset!

Weekend LAN Party

Feedback form!
https://forms.gle/z5kWDCcWcoKbixhT9 (scan QR Code ^^^)

https://forms.gle/z5kWDCcWcoKbixhT9


What is crypto anyway?

Encrypted Message

Alice Bob

Eve



Applications



Encodings

- TL;DR - computers store things in binary (0s and 1s) , and we have 
different ways of representing this

- Tip: In Python, always work with bytestrings, never with the 
normal string types (get on modern python!!! 3.8+)

Format Description From Bytes To Bytes

base64 uses printable letters to 
encode more complex binary

base64.b64encode base64.b64decode

hex uses symbols 0-9, A-F bytearray.hex(), 
binascii.hexlify()

bytes.fromhex(), 
binascii.unhexlify()

integer normal integers Crypto.Util.number.bytes_to
_long (from PyCryptoDome), 
int.from_bytes

Crypto.Util.number.long_to_
bytes (from PyCryptoDome),
int.to_bytes



“Ancient” Ciphers

● Caesar Cipher: Shifting letters over by some number (rot k): 
○ a -> c, b -> d, …, y -> a, z -> b (rot 2)

● Substitution Cipher:
○ Create a table mapping each letter to another
○ To crack: use frequency analysis

● Vigenere Cipher:
○ like Caesar Cipher, but each character is shifted by a keyphrase, rather 

than just one number

These are not secure, can easily be solved or brute forced. In 
recent years, “easy” crypto challenges have moved past them. 



Symmetric Encryption

Encryption Decryption



XOR Encryption

A B A XOR B

1 1 0

1 0 1

0 1 1

0 0 0

● XOR is the inverse of itself -> perfect for symmetric encryption
● Has nice probabilistic properties (ask us for short proof later)
● Fundamental operation in nearly all symmetric encryption



AES

• XOR requires that your key is 
the same length as the 
message

• AES is a modern symmetric 
encryption standard that uses 
XOR internally



Diffie-Hellman Key Exchange 

Untitled￼



Asymmetric Encryption



RSA: Intuition

Alice Bob



RSA

● Fundamentally based on asymmetry of the factoring problem: 
- multiplying two numbers is easy, factoring a number is hard
- “Cracking” RSA means factoring a large product of primes p and q

● Bigger n = more secure and hard to find p and q
● Small n (<512 bits) can be brute forced

○ See: factordb, Wolfram Alpha, SageMath factorization algorithm
○ https://en.wikipedia.org/wiki/Texas_Instruments_signing_key_controversy

● Try challenge: Easy RSA -- Look at Wikipedia
● What to do when n is big? 

○ Cry Come back Sunday for attacks on bigger n

https://en.wikipedia.org/wiki/Texas_Instruments_signing_key_controversy


RSA: Asymmetric Encryption

● n = p*q
● Φ(n) = (p-1)*(q-1)
● e = usually 65537, coprime to Φ (small e is usually breakable)
● d = inverse mod(e, Φ(n))

○ In Python 3.8+: pow(e, -1, Φ(n))

● Public key: (n, e)
● Private key: (p, q, e)
● Encrypting: c ≡ me (mod n)
● Decrypting: m ≡ cd (mod n)



Tools!

- SageMath is your friend, especially for CTF challenges (but not 
necessary for today)

- PwnTools
- PyCryptodome
- Google + StackOverflow (“how to crack RSA”)

- Installing these all is annoying: Get Docker + CryptoHack 
container

We will go over installation of common crypto libraries on Sunday!

https://doc.sagemath.org/html/en/index.html
https://docs.pwntools.com/en/stable/
https://pycryptodome.readthedocs.io/en/latest/
https://github.com/cryptohack/cryptohack-docker
https://github.com/cryptohack/cryptohack-docker


Cryptohack!!



Next Meetings

Weekend Seminar: Crypto 2
- Frequency Analysis
- Block Cipher
- ECC (Elliptic Curve Cryptography)
- ????

Next Thursday: Intro to Binary Exploitation (PWN)
- Stack overflows
- Memory attacks
- The history of binary exploitation!

- The back and forth



Demo for funsies


